Harmonic analysis and a bentness-like notion in certain finite Abelian groups over some finite fields

نویسنده

  • Laurent Poinsot
چکیده

It is well-known that degree two finite field extensions can be equipped with a Hermitian-like structure similar to the extension of the complex field over the reals. In this contribution, using this structure, we develop a modular character theory and the appropriate Fourier transform for some particular kind of finite Abelian groups. Moreover we introduce the notion of bent functions for finite field valued functions rather than usual complex-valued functions, and we study several of their properties. In particular we prove that this bentness notion is a consequence of that of Logachev, Salnikov and Yashchenko, introduced in Bent functions on a finite Abelian group (1997). In addition this new bentness notion is also generalized to a vectorial setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bent functions on a finite nonabelian group

We introduce the notion of a bent function on a finite nonabelian group which is a natural generalization of the well-known notion of bentness on a finite abelian group due to Logachev, Salnikov and Yashchenko. Using the theory of linear representations and noncommutative harmonic analysis of finite groups we obtain several properties of such functions similar to the corresponding properties of...

متن کامل

Classical Wavelet Transforms over Finite Fields

This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...

متن کامل

Classical wavelet systems over finite fields

This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...

متن کامل

Structure of finite wavelet frames over prime fields

‎This article presents a systematic study for structure of finite wavelet frames‎ ‎over prime fields‎. ‎Let $p$ be a positive prime integer and $mathbb{W}_p$‎ ‎be the finite wavelet group over the prime field $mathbb{Z}_p$‎. ‎We study theoretical frame aspects of finite wavelet systems generated by‎ ‎subgroups of the finite wavelet group $mathbb{W}_p$.

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1304.1731  شماره 

صفحات  -

تاریخ انتشار 2013